
Lecture 26

Radiation Fields

We have shown how to connect the vector and scalar potentials to the sources J and % of
an electromagnetic system. This is a very important connection: it implies that once we
know the sources, we know how to find the fields. But the relation between the fields and
the sources are in general rather complex. In this lecture, we will simplify this relation by
making a radiation field or far-field approximation by assuming that the point where the field
is observed is very far from the source location in terms of wavelegth. This approximation
is very useful for understanding the physics of the radiation field from a source such as an
antenna. It is also important for understanding the far field of an optical system. As shall
be shown, this radiation field carries the energy generated by the sources to infinity.
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254 Electromagnetic Field Theory

26.1 Radiation Fields or Far-Field Approximation

Figure 26.1: The relation of the observation point located a r to the source location at r′.
The distance of the observation point r to the source location r′ is |r− r′|.

In the previous lecture, we have derived the relation of the vector and scalar potentials to the
sources J and %.1 They are given by

A(r) = µ

�
V

dr′J(r′)
e−jβ|r−r

′|

4π|r− r′|
(26.1.1)

Φ(r) =
1

ε

�
V

dr′%(r′)
e−jβ|r−r

′|

4π|r− r′|
(26.1.2)

where β = ω
√
µε = ω/c is the wavenumber. The integrals in (26.1.1) and (26.1.2) are

normally untenable, but when the observation point is far from the source, approximation to
the integrals can be made giving them a nice physical interpretation.

1This topic is found in many standard textbooks in electromagnetics [31, 42, 49]. They are also found in
lecture notes [39, 129].
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Figure 26.2: The relation between |r| and |r−r′| using the parallax method, or that |r−r′| ≈
|r| − r′ · r̂. It is assumed that r is almost parallel to r− r′.

26.1.1 Far-Field Approximation

When |r| � |r′|, then |r − r′| ≈ r − r′ · r̂, where r = |r| . This approximation can be
shown algebraically or by geometrical argument as shown in Figure 26.2. Thus (26.1.1) above
becomes

A(r) ≈ µ

4π

�
V

dr′
µJ(r′)

r − r′ · r̂
e−jβr+jβr

′·r̂ ≈ µe−jβr

4πr

�
V

dr′J(r′)ejβr
′·r̂ (26.1.3)

In the above we have made used of that 1/(1−∆) ≈ 1 when ∆ is small, but ejβ∆ 6= 1, unless
jβ∆ � 1. Hence, we keep the exponential term in (26.1.3) but simplify the denominator to
arrive at the last expression above.

If we let βββ = βr̂, and r′ = x̂x′ + ŷy′ + ẑz′, then

ejβr
′·r̂ = ejβββ·r

′
= ejβxx

′+jβyy
′+jβzz

′
(26.1.4)

Therefore (26.1.3) resembles a 3D Fourier transform integral, namely

A(r) ≈ µe−jβr

4πr

�
V

dr′J(r′)ejβ·r
′

(26.1.5)

and (26.1.5) can be rewritten as

A(r) ∼=
µe−jβr

4πr
F(βββ) (26.1.6)
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where

F(βββ) =

�
V

dr′J(r′)ejβ·r
′

(26.1.7)

is the 3D Fourier transform of J(r′) with β = r̂β.

It is to be noted that this is not a normal 3D Fourier transform because |β|2 = βx
2 +

βy
2 + βz

2 = β2. In other words, the length of the vector β is fixed to be β, whereas in a
normal 3D Fourier transform, βx, βy, and βz are independent variables, each with values in
the range [−∞,∞], and βx

2 + βy
2 + βz

2 ranges from zero to infinity.

The above is the 3D “Fourier transform” of the current source J(r′) with Fourier variables,
βx, βy, βz lying on a sphere of radius β and βββ = βr̂. This spherical surface in the Fourier
space is also called the Ewald’s sphere.

26.1.2 Locally Plane Wave Approximation

We can write r̂ or βββ in terms of direction cosines in spherical coordinates or that

r̂ = x̂ cosφ sin θ + ŷ sinφ sin θ + ẑ cos θ (26.1.8)

Hence,

F(βββ) = F(βr̂) = F(β, θ, φ) (26.1.9)

It is not truly a 3D function, since β, the length of the vector β, is fixed. It is a 3D Fourier
transform with data restricted on a spherical surface.

Also in (26.1.6), when r � r′ · r̂, e−jβr is now a rapidly varying function of r while, F(βββ) is
only a slowly varying function of r̂ or of θ and φ, the observation angles. In other words, the
prefactor in (26.1.6), exp(−jβr)/r, can be thought of as resembling a spherical wave. Hence,
if one follows a ray of this spherical wave and moves in the r direction, the predominant
variation of the field is due to e−jβr, whereas the direction of the vector β changes little,
and hence, F(β) changes little. Furthermore, r′ in (26.1.7) are restricted to small or finite
number, making F(β) a weak function of β.

The above shows that in the far field, the wave radiated by a finite source resembles a
spherical wave. Moreover, a spherical wave resembles a plane wave when one is sufficiently
far from the source. Hence, we can write e−jβr = e−jβββ·r where βββ = r̂β and r = r̂r so that a
spherical wave resembles a plane wave locally. This phenomenon is shown in Figure 26.3.
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Figure 26.3: A source radiates a field that resembles a spherical wave. In the vicinity of the
observation point r, the field is strongly dependent on exp(−jβr) but weakly dependent on
β. Hence, the field becomes locally a plane wave in the far field.

Then, it is clear that with the plane-wave approximation, ∇ → −jβββ = −jβr̂, we have

H =
1

µ
∇×A ≈ −j β

µ
r̂ × (θ̂Aθ + φ̂Aφ) = j

β

µ
(θ̂Aφ − φ̂Aθ) (26.1.10)

Similarly [39,129],

E =
1

jωε
∇×H ∼= −j

β

ωε
r̂ ×H ∼= −jω(θ̂Aθ + φ̂Aφ) (26.1.11)

Notice that β = βr̂, the direction of propagation of the local plane wave, is orthogonal to E
and H in the far field, a property of a plane wave. Moreover, there are more than one way
to derive the electric field E. For instance, using (26.1.10) for the magnetic field, the electric
field can also be written as

E =
1

jωµε
∇×∇×A (26.1.12)

Using the formula for the double-curl operator, the above can be rewritten as

E =
1

jωµε

(
∇∇ ·A−∇2A

) ∼= 1

jωµε

(
−ββ + β2I

)
·A (26.1.13)

where we have used that∇ ∼= −jβ and∇2A = −β2A. Alternatively, we can factor β2 = ω2µε
and rewrite the above as

E = −jω
(
−β̂β̂ + I

)
·A = −jω

(
−r̂r̂ + I

)
·A (26.1.14)
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Since I = r̂r̂ + θ̂θ̂ + φ̂φ̂, then the above becomes

E = −jω
(
θ̂θ̂ + φ̂φ̂

)
·A = −jω(θ̂Aθ + φ̂Aφ) (26.1.15)

which is the same as previously derived. It also shows that the electric field is transverse to
the β vector. We can also arrive at the above by letting E = −jωA − ∇Φ, and using the
appropriate formula for the scalar potential.

Furthermore, it can be shown that in the far field, using the plane-wave approximation,

|E|/|H| ≈ η (26.1.16)

where η is the intrinsic impedance of free space, which is a property of a plane wave. Moreover,
one can show that the time average Poynting’s vector, or the power density flow, in the far
field is

〈S〉 ≈ 1

2η
|E|2r̂ (26.1.17)

which resembles also the property of a plane wave. Since the radiated field is a spherical
wave, the Poynting’s vector is radial. Therefore,

〈S〉 = r̂Sr(θ, φ), where Sr(θ, φ) =
1

2η
|E|2 (26.1.18)

where Sr is the radial power density. The plot of |E(θ, φ)| is termed the far-field pattern or
the radiation pattern of an antenna or the source, while the plot of |E(θ, φ)|2 is its far-field
power pattern.

26.1.3 Directive Gain Pattern Revisited

Once the far-field radiation power pattern or the radial power density Sr is known, the total
power radiated by the antenna can be found by integrating over all angles, viz.,

PT =

� π

0

� 2π

0

r2 sin θdθdφSr(θ, φ) (26.1.19)

The above evaluates to a constant independent of r due to energy conservation. Now assume
that this same antenna is radiating isotropically in all directions, then the average power
density of this fictitious isotropic radiator as r →∞ is

Sav =
PT

4πr2
(26.1.20)

A dimensionless directive gain pattern can be defined such that [31,129]

G(θ, φ) =
Sr(θ, φ)

Sav
=

4πr2Sr(θ, φ)

PT
(26.1.21)

This directive gain pattern is a measure of the radiation power pattern of the antenna or
source compared to when it radiates isotropically. The above function is independent of r in
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the far field since Sr ∼ 1/r2 in the far field. As in the Hertzian dipole case, the directivity of
an antenna D = max(G(θ, φ)), is the maximum value of the directive gain. It is to be noted
that by its mere definition,

�
dΩG(θ, φ) = 4π (26.1.22)

where
�
dΩ =

� 2π

0

� π
0

sin θdθdφ. It is seen that since the directive gain pattern is normalized,
when the radiation power is directed to the main lobe of the antenna, the corresponding side
lobes and back lobes will be diminished.

An antenna also has an effective area or aperture Ae, such that if a plane wave carrying
power density denoted by Sinc impinges on the antenna, then the power received by the
antenna, Preceived is given by

Preceived = SincAe (26.1.23)

A wonderful relationship exists between the directive gain pattern G(θ, φ) and the effective
aperture, namely that2

Ae =
λ2

4π
G(θ, φ) (26.1.24)

Therefore, the effective aperture of an antenna is also direction dependent. The above implies
that the radiation property of an antenna is related to its receiving property. This is a
consequence of reciprocity theorem that we will study later. The constant of proportionality,
λ2/(4π) is a universal constant that is valid for all antennas satisfying reciprocity theorem.
The derivation of this constant for a Hertzian dipole is given in Kong [31], or using blackbody
radiation law [129,130].

The directivity and the effective aperture can be enhanced by designing antennas with
different gain patterns. When the radiative power of the antenna can be directed to be in a
certain direction, then the directive gain and the effective aperture (for that given direction)
of the antenna is improved. This is shown in Figure 26.4. Such focussing of the radiation fields
of the antenna can be achieved using reflector antennas or array antennas. Array antennas,
as shall be shown, work by constructive and destructive wave field of the antenna.

Being able to do point-to-point communications at high data rate is an important modern
application of antenna array. Figure 26.5 shows the gain pattern of a sophisticated antenna
array design for 5G applications.

2The proof of this formula is beyond the scope of this lecture, but we will elaborate on it when we discuss
reciprocity theorem.
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Figure 26.4: The directive gain pattern of an array antenna. The directivity is increased by
constructive interference (courtesy of Wikepedia).



Radiation Fields 261

Figure 26.5: The directive gain pattern of a sophisticated array antenna for 5G applications
(courtesy of Ozeninc.com).
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